COOLING CONNECTIONS STATUS REPORT: Sector Fittings

JUNE, 2002

N. HARTMAN, E. ANDERSSEN, M. GILCHRIESE, F. GOOZEN, T. JOHNSON, T. WEBER, J. WIRTH

CURRENT STATUS

FITTINGS — AS OF LAST PIXEL WEEK

- FITTING CROSS SECTIONS OPTIMIZED FOR LOW MASS
- INDIUM AND LUER LOCK VARIANTS MACHINED
- SECTOR, EXHAUST, AND CAPILLARY SIZE FITTINGS CREATED

LASER WELDING

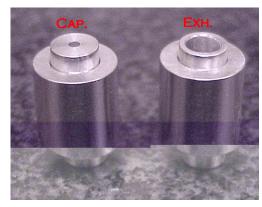
- New fittings could not be laser welded
- PROBLEM WAS TRACED TO FITTING MATERIAL TYPE
 - ORIGINAL MATERIAL WAS AL6063
 - LOWER SILICON, LOWER MAGNESIUM
 - ORIGINALLY CONSIDERED LESS IMPORTANT THAN CHOICE OF TUBING MATERIAL
 - New fittings were made in AL6061
 - MORE READILY AVAILABLE
 - ALLOYS WERE CONSIDERED SIMILAR ENOUGH TO USE INTERCHANGEABLY
- A SMALLER SET OF NEW FITTINGS WERE RE-MADE IN 6063
 - THESE WERE WELDED SUCCESSFULLY (AS ORIGINALLY DEMONSTRATED)

TESTING

- WHILE LASER WELDING PROBLEMS WERE OCCURRING, NEW FITTINGS WERE GLUED AND TESTED FOR VERIFICATION REGIMEN
- INDIUM FITTINGS COULD NOT BE MADE TO SEAL, AND WERE DISMISSED
- LUER FITTINGS TESTED SUCCESSFULLY
 - INITIALLY 7 OF 10 FITTINGS PASSED, BUT WERE LOW ON TORQUE
 - AFTER TIGHTENING (WRENCH WAS MODIFIED) 5 OF 5 PASSED WITH NO PROBLEMS

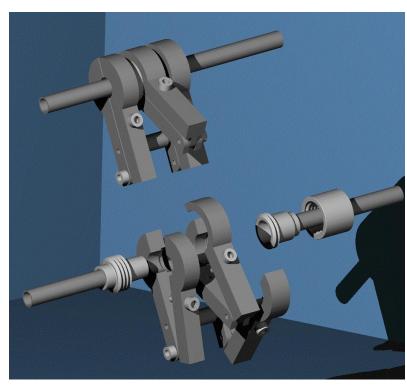
"REDUCED-MASS" LUER FITTINGS

NUT, MALE, FEMALE FITTING PIECES

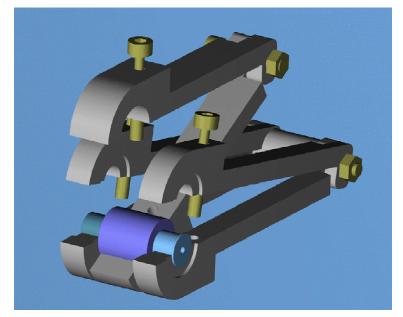

Nuts

→ MALE - SECTOR SIDE

✓ FEMALE — IN/OUT SIDE


MALE AND FEMALE PIECES ASSEMBLED

IN/OUT SIDE - ASSEMBLED

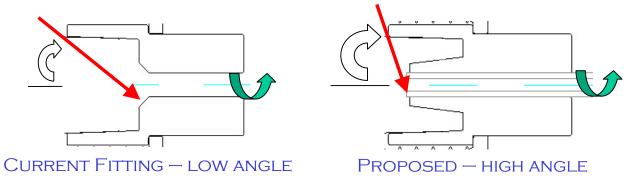

Fitting	Metal X-Area	T Al/fitting	T Plastic/fitting	T Ni,In,Cu/Fitting	% X0/fitting	# fittings	%X0
Luer Lock (Al) - Baseline	115	6.0E-05	0.0E+00	0.0E+00	0.08%	75	5.63%
Variseal (w/ centering ring)	40	2.4E-05	9.4E-07	0.0E+00	0.03%	75	2.27%
Variseal (w/o centering ring)	36	2.1E-05	9.4E-07	0.0E+00	0.03%	75	2.03%
Indium Fitting (Stave Size - CuNi)^	13	0.0E+00	0.0E+00	4.7E-06	0.02%	75	1.75%
Reduced Mass Luer Lock	41	1.6E-05	0.0E+00	0.0E+00	0.02%	75	1.51%
Indium Fitting (Sector Size - AI)*	36	1.3E-05	0.0E+00	3.1E-07	0.02%	75	1.32%

FITTING WRENCH

OLD WRENCH

- PREVENTS DIFFERENTIALLY TORQUING THE TWO JOINING TUBES
- PROVIDES FOR ASSEMBLY AS WELL AS DISASSEMBLY
- HAD TO BE MODIFIED FOR HIGHER TORQUE (LARGER SCREWS AND LONGER ARM)

NEW WRENCH


LATEST TEST RESULTS

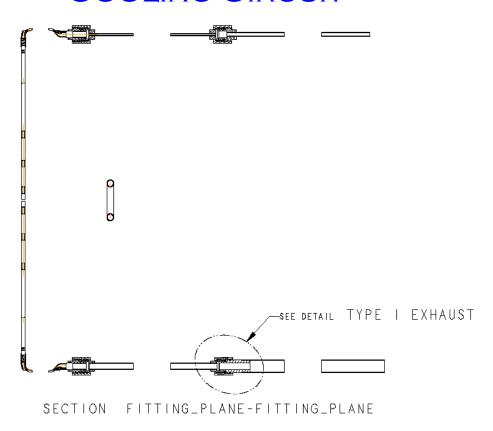
TEST FITTING	TEST CATEGORY (TESTS ARE SEQUENTIAL LEFT TO RIGHT)										
	1> 2>			3 >	4 >	5> 6>		7 >	8 >	9 >	10 >
	He VAC (2e-5 TL/sec)	10 Bar Proof (1 min. visual)	MEGA RAD?	4 bar/0 C (7e-5 TL/sec)	1 bar/-35 C (2e-5 TL/sec)	He VAC (2e-5 TL/sec)	Therm Cycles (50 X -35/20 C)	Press. Cycles (50 X 1/4 bar)	He VAC (2e-5 TL/sec)	4 bar/0 C (7e-5 TL/sec)	1 bar/-35 C (2e-5 TL/sec
uerLok Al/Al ver 2			-		 	 					
							~60 cycles	125 #		60#	1
1	2.8E-10	pass	N/A	5 E-10	3 E-8	<1.2 E-10	done	done	4.2 E-10	1 E-8	3 E-8
2	2.6 E-10	pass	N/A		4 E-10	<1.2 E-10	done	done	4 E-10	8.2 E-9	3 E-10
3	1.3E-10	pass	N/A			<1.2 E-10	done	done	4 E-10		
4	2.4 E-10	pass	N/A	1 E-9	3 E-10	<1.2 E-10	done	done	4 E-10	9 E-10	8 E-10
5	2.0 E-10	pass	N/A			<1.2 E-10	done	done	4 E-10		
6	2.5 E-10	pass	N/A	2 E-9	4 E-10	<1.2 E-10	done	done	3.5 E-10	5 E-10	1.5 E-9
7	1.4 E-10	pass	N/A	6 E-9	2 E-8	< 1.2 E- 10	done	done	3 E-10	4 E-9	5 E-10
8	1.4 E-10	pass	N/A	1 E-9	1 E-9	2 E-10	done	done	8 E-10	1 E-9	3 E-10
9	2.4 E-10	pass	N/A	2 E-9	2 E-9	5 E-10	done	done	7.5 E-10	9 E-10	3 E-10
10	2.4 E-10	pass	N/A	1 E-9	1.4 E-9	2 E-9	done	done	7 E-10	4.6 E-10	4 E-10
trial #2 A	June 4 02			second		trial		after		retorque	
	4 = 40		N I / A	0 = 0	0 = 0		~ 50 cycles	145 #		60 # 0C	60 # -35C
2	1 E-10 1 E-10	pass	N/A	8 E-9 5 E-9	8 E-9 6 E-10	2 E-9 3 E-10	done	done	1 E -10 1 E-10	1.2 E-10 2.4 E-10	1.0 E-10 3.5 E -10*
		pass	N/A	3.9 E-9	2.5 E-10	3 E-10 4 F-9	done	done	1 E - 10	2.4 E-10 2.0 E -10	3.5 E -10 2.2 E-10
<u>5</u>	1.5 E-10 1.6 E-10	pass	N/A N/A	3.9 E-9 2.4 E-9	2.5 E-10 2.5 E-9	4 E-9 1.6 E-10	done done	done done	1.2 E-10	2.0 E -10 1.6 E-10	2.2 E-10 2 E-10
<i>1</i>	1.6 E-10 1 E-10	pass	N/A	3.9 E-9	2.5 E-9 2 E-10	1.6 E-10 1.6 E-10	done		1.2 E-10 1.1 E-10	1.5 E-10	2 E-10 2 E-10
9	I E-10	pass	IV/A	3.9 ⊑-9	Z E-10	1.0 ⊏-10	uone	done	1.1 E-10	1.3 E-10	Z E-10

INITIAL SET OF FITTINGS INCLUDED 10 SAMPLES. AFTER THREE PARTIAL FAILURES, THE THREE FAILED FITTINGS AND TWO ADDITIONAL ONES WERE DISASSEMBLED, CLEANED, AND REASSEMBLED WITH A HIGHER TORQUE SETTING (USING A MODIFIED WRENCH). THIS REDUCED SET OF FIVE FITTINGS PASSED WITH NO FAILURES.

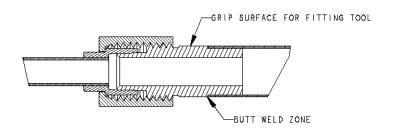
LASER WELDING — WHERE WE ARE NOW

- SECTOR WELD APPEARS READY TO GO
 - YIELD IS NOT AS HIGH AS WOULD LIKE (~80%) BUT WE ARE PREPARED TO MAKE TUBES NOW
 - CARRIER IS READY (NEXT SLIDE)
 - Have sector fittings in hand (though further refinements may be made)
 - MAY BE LENGTHENED VERY SLIGHTLY FOR INCREASED WRENCH CLAMPING AREA
- WELDING OF CAPILLARY TUBING HAS BEEN DEMONSTRATED ON DUMMY FITTINGS
 - MATERIALS AND SIZE ARE WELDABLE (YIELD SIMILAR TO SECTOR FITTINGS)
 - CONCERNS EXIST ABOUT ABILITY TO WELD TO REAL CAPILLARY FITTINGS.
 - WELD ANGLE IS LOWER FOR REAL FITTING
 - LASER PULSE MAY DISTORT SEALING SURFACE
 - MAY NEED SPECIAL CAPILLARY FITTING DESIGN

FURTHER VERIFICATIONS OF LASER WELD MUST BE COMPLETED


- IN SOME CASES SPECIAL FITTINGS ARE NEEDED THESE MUST BE PROTOTYPED AT SOME POINT
- FEMALE FITTINGS MUST BE TESTED AFTER WELDING TO ASSURE NO DEGRADATION IN SEALING QUALITY
 - LASER PULSE CAN IMPINGE ON SEAL SURFACE
 - ONLY MALE FITTINGS HAVE BEEN TESTED AFTER WELDING

SECTOR CARRIERS


- CARRIER HOLDS SECTOR TUBE WHILE IN TRANSIT AND DURING WELDING
 - LOCATES FITTINGS RELATIVE TO TUBE
 - PROTECTS TUBE DURING HANDLING
- CARRIERS HAVE BEEN TESTED AND MODIFIED AS SUGGESTED BY WELDER
 - READY TO WELD PRE-PRODUCTION SECTORS

COOLING CIRCUIT

MUST PROTOTYPE
THIS JUNCTION OR
DEVELOP ALTERNATE
CONNECTION TYPE

PLANS

FITTINGS

- CURRENTLY REFINING FITTING DIMENSIONS (LENGTH)
- WILL MAKE PROTOTYPES OF ALL FITTINGS SHORTLY
 - INCLUDES NEW CAPILLARY TYPE
 - Does not include special exhaust junction (previous slide) at the moment
 - ALL FROM 6063 (RAW MATERIAL TESTED FOR ELEMENT COMPOSITION BEFORE MACHINING)

LASER WELDING

- WILL WELD SECTORS AND U-TUBES WITH "REAL" FITTINGS (~10 EACH) WHEN FITTINGS BECOME AVAILABLE
- WILL WELD OTHER TUBE JUNCTIONS AS WELL.
 - INLET TUBES (CURRENT DESIGN)
 - CAPILLARY TUBES (NEW DESIGN)
 - EXHAUST TUBES MAY WAIT FOR TESTING RESULTS OF THE ABOVE

TESTING

- 10 SECTORS WILL BE TESTED WITH SAME REGIMEN AS CURRENT FITTINGS (WHICH ARE GLUED)
 - WILL ASSESS EFFECT OF LASER WELD ON SEALING CAPABILITY
 - WILL TEST MORE THAN THE REQUIRED 10 FITTINGS FOR VALIDATION (ONLY A SET OF 5 HAS PASSED SO FAR)
- WELDED CAPILLARY AND INLETS WILL BE TESTED AS WELL
- CAPILLARY TUBING TO BE SENT TO MARSEILLE FOR PRESSURE DROP TESTING